銀河系中心分子層と 銀河系核周円盤

竹川俊也, 岡 朋治, 田中邦彦

Central Molecular Zone (CMZ)

- $M_{\rm CMZ}$: ~5×10⁷ $M_{\rm sun}$
- $n(H_2) > 10^4 \text{ cm}^{-3}$

• *T* > 30 K

• Δ*V* > 30 km/s

Difficulties

- ・円盤部が邪魔
- The nearest galactic center 前征 (~8.3 kpc from the Sun) • 見え
- 前後関係がわかりにくい
 - 見えすぎて困る

Central Molecular Zone (CMZ)

Schematic face-on view of the central 500 pc \rightarrow

Galactic barに沿った長軸 を持つX1軌道群 それに垂直な長軸を持つ内 側のX2軌道群

Central Molecular Zone (CMZ)

Schematic face-on view of the central 500 pc → 軌道同士の接触により 角運動量を失う Galactic bar → CMZ

Discovery of the Pigtail

Discovery of the Pigtail

Galactic Center Arms and the 120 pc ring

Galactic Center Arms and the 120 pc ring

円運動を仮定し、 視線速度から 中心からの距離を推定

$$y = \pm \left| x \right| \sqrt{\left(\frac{V_{\text{rot}}}{v_{\text{los}}}\right)^2 - 1}$$

Galactic Center Arms and the 120-pc Ring

+50 km/s cloud

+20 km/s cloud

中心核(Sgr A*)方向には2つの巨大分子雲

- M_{50k} : (1–5)×10⁵ M_{sun}
- M_{20k} : (2–8)×10⁵ M_{sun}
- $n(H_2) \sim 10^4 \, \text{cm}^{-3}$
- *T* ~ 30–50 K
- Interacting with the nuclear region(?)

中心核(Sgr A*)方向には2つの巨大分子雲

GMCs

Galactic Center Arms and the 120-pc Ring

中心核(Sgr A*)方向には2つの巨大分子雲

Twisted ring?

Herschel 250 μ m (Molinari et al. 2011)

Figure 2. Herschel SPIRE 250 μ m image of the Galactic center region.

Galactic Center Arms and the 120-pc Ring

Twisted ring?

Four streams?

Kruijssen et al. 2015

中心核(Sgr A*)近傍には2つの巨大分子雲

Dust torus of our Galaxy

(Takekawa et al. 2016 in prep.)

Asymmetric disk/ring

- $M_{\rm CND}$ ~10⁵ $M_{\rm sun}$
- $n(H_2) \sim 10^5 \, \text{cm}^{-3}$
- $T_k > \sim 100 \text{ K}$
- V_{rot} ~110 km/s

Galactic Latitude [deg] 0 10 -0.08 -0.06 -0.04 -0.02 HCN 1-0

(NRO 45 m)

+50 km s⁻¹ cloud

CND=2-pc ring+NLE (NLE: Negative longitude extension)

-0.02 -0.04 -0.06 -0.08 -0.10 Galactic Longitude [deg]

(Takekawa et al. 2016 in prep.)

2-pc ring NLE

CND

5 pc

+20 km s⁻¹ cloud

Key object for feeding and feedback

(NLE: Negative longitude extension)

-0.02 -0.04 -0.06 -0.08 -0.10 Galactic Longitude [deg]

Key object for feeding and feedback

Minispiral

3つのケプラー軌道に沿って運動 (Zhao et al. 2009)

Our Galactic Nucleus

The nearest galactic nucleus

Sgr A*

- $M_{\rm Sgr A^*}$ ~4×10⁶ $M_{\rm sun}$
- $L_{\rm bol} \sim 10^{36} \, {\rm erg/s}$
- $dM_{\rm BH}/dt < 10^{-7} M_{\rm sun}/{\rm yr}$
- 動かない
 - 時々flare up (X·ray/IR/sub·mm/mm)
- cm波では変動しない
 Past activities?

Our Galactic Nucleus

The nearest galactic nucleus

Sgr A*

1040 $\Delta t (L_x \sim 3 \times 10^{39})$ era s ')≧6 vr 10³⁸ L_{x sgr A} (erg s⁻¹) 10³⁶ This work P03 $50 \text{ km s}^{-1} \text{ cloud}$ 10³⁴ 10³² 150 100 50 200 0 years ago

R. Capelli et al.: The X-ray lightcurve of Sgr A* over the past 150 years

by X-ray reflection nebulae (e.g. Koyama et al. 1995)

Past activities?

Our Galactic Nucleus

The nearest Fermi data reveal giant gamma-ray bubbles galactic nucleus

Sgr A*

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

Fermi bubbles (e.g. Su et al. 2010)

Past activities?

Our recent studies

(NLE: Negative longitude extension)

-0.02 -0.04 -0.06 -0.08 -0.10 Galactic Longitude [deg]

Key object for feeding and feedback

Line surveys toward the CND

(Takekawa et al. 2014)

• CNDの化学組成を調べる (CND tracer を探す)

Line Classification

HCN 1-0

(NRO 45 m)

2-pc ring

5 pc

NLE

-0.02

-0.04

(Takekawa et al. 2014)

GMCに対するCNDの相対強度 によりlineを3タイプに分類

Line Classification

(Takekawa et al. 2014)

CND-type HCN, HCO+ SiO, CN

Hybrid-type CS, CCH SO, HNC

GMC-type HCCCN CH₃OH, HNCO GMCに対するCNDの相対強度 によりlineを3タイプに分類

OTF mapping of the CND

NRO 45m

(Takekawa et al. in prep.)

Galactic Longitude [deg]

Target lines HCN 1-0, HCO⁺ 1-0, SiO 2-1 CS 2-1, HC₃N 11-10 etc...

Mapping range = 6'×6' Beamsize ~20''(~0.8 pc)

赤: HCN 1–0 redshift 青: HCN 1–0 blueshift 緑: HC₃N 11–10 (GMC·typ

OTF mapping of the CND

(Takekawa et al. in prep.)

OTF mapping of the CND

(Takekawa et al. in prep.)

(Takekawa et al. in prep.)

(Takekawa et al. in prep.)

Galactic Longitude [deg]

Bridge between the 20k cloud and the CND

化学組成もCNDと 20k cloudの中間

Formation scenario of the bridge

Formation scenario of the bridge

Formation scenario of the bridge

LVG analysis

HCN 1-0
 H¹³CN 1-0
 HCN 4-3
 HCO⁺ 1-0
 HCO⁺ 4-3

5輝線

n(H₂), *T*, *N*/d*V*, [HCN]/[HCO⁺]

	n(H ₂) [cm ⁻³]	7 [K]
20k	104.9-5.3	30–50
bridge	>10 ^{5.8}	60–150
NLE	104.7-5.0	>100

(preliminary)

Summary

- CND方向のline survey
 → 大きい分子はCNDで少ない
- OTF mapping of the CND
 → 20k cloudとCNDを繋ぐ構造 を発見
 →NLEとの衝突(?)

GMCがCNDの進化には重要
 GMCは確かに中心核近傍にある

HCN/HCO⁺ intensity ratio

HCN 1-0/HCO⁺ 1-0 > 1 in AGNs < 1 in starburst

(e.g. Kohno et al. 2004)

Our Galaxy ~2 in CMZ ~1.6 in 2-pc ring < 1 in disk

HCN/HCO+ intensity ratio

0.5

1.5

0.5

Galactic Longitude [deg] (Jones et al. 2012を基に作成)

Our Galaxy ~2 in CMZ ~1.6 in 2-pc ring < 1 in disk

LVG analysis

微妙に減っている?!