

準解析的銀河形成モデルから BHへの質量降着機構に 与えられる制限

白方光(北海道大学M2)

- 共同研究者 -

川勝 望 (呉高専), 和田 桂一 (鹿児島大), 榎 基宏 (東京経済大), 岡本 崇 (北海道大), 長島 雅裕 (文教大), 他 ²GC グループメンバー

AGN銀河の中心1kpc → 1pcスケールでの質量降着機構の理解に向けて @ NAOJ, 2015.12.21 - 22

Semi Analytic (SA) galaxy formation model

- dark haloの形成・進化… N体シミュレーションで与える
- ・銀河形成・星形成・SMBH成長はモデル化 (解析解,シミュレーションや観測結果の応用)
- cosmological simulationより大きな計算体積,
 少ない計算時間
- ・個数密度の小さな天体の統計的研究には特に有用

Galaxy Formation in the Hierarchical Clustering Scenario

early Universe

present day

※ 長島 雅裕さん (文教大) のスライドより拝借

Semi Analytic (SA) galaxy formation model

Revealing AGN mechanism

AGN & SMBH model in SA models

- ・SMBHへのガス降着トリガー
 - 銀河合体
 - 銀河disk 不安定・bar (optional)
 - haloのhot gasの直接降着 (optional)
- ・~kpc → ~100-10 pc スケールへのガス降着
 - 特に何も考えない
 - (バルジのガスの一部が即時的にSMBHに降着する)
 - <u>簡単にモデル化されたgas reservoirを経由</u>

AGN & SMBH model in SA models

- ・~kpc → ~100-10 pc スケールへのガス降着
 - 特に何も考えない
 - <u>簡単にモデル化されたgas reservoirを経由</u>

例えば…

母銀河→ gas reservoirへのinflow rate:
$$\dot{M}_{\rm RS}^+$$

 $\dot{M}_{\rm RS}^{+} = f_{\rm BH} \phi_{\rm B} \left(\frac{\phi_{\rm B}}{100 M_{\odot} y r^{-1}} \right)^{\alpha - 1}, \qquad (1) \qquad \qquad \varphi_{\rm B:} \text{ bulge SFR}$

gas reservoir \rightarrow SMBH $\land \mathcal{O}$ accretion rate: \dot{M}_{RS}^-

$$\dot{M}_{\rm RS}^- = \dot{M}_{\rm BH} = 0.001 \frac{\sigma_B^3}{G} \left(\frac{M_{\rm RS}}{M_{\rm BH}}\right)^{3/2} \left(1 + \frac{M_{\rm BH}}{M_{\rm RS}}\right)^{1/2}$$
(2) $\sigma_{\rm B:}$ bulge velocity dispersion

(Fontanot et al., 2015, MNRAS, 453, 4112)

AGN & SMBH model in SA models

- ・なぜ gas reservoir を考える必要があるか?
 - BHに降着するまでに, ガスは持っていた角運動量 の99.9999%を捨てないといけない
 - 近傍で明るいAGNがモデルの中で出来すぎ, SMBH成長史を正しくモデル化できない
 - AGN放射を吸収⁻ されている.しか

AGN & SMBH model in SA

models

- これまでのvGC
- 母銀河に存在するダストによる減光だけで,
- AGNLFのbright end は~2等暗くなる
- → 銀河合体からSMBHに
 ガス降着が始まるまでに
 数dynamical time以上の
 遅れがあれば ^{CND導入によって実現!}
 観測と矛盾しなくなる

Shirakata+ 2015, MNRAS, 450, L6

This work

- ・最小限のフリーパラメータで, SMBH周辺の構造
 (= gas reservoir) をモデル化したい
- gas reservoirのシミュレーションモデルはたくさんあるが、銀河形成の枠組みの中でモデルの現実性を議論するのは難しい
- SAを使って, gas reservoirが銀河形成の枠組みの
 中で果たす役割を調べる

今回はKawakatu & Wada (2008), ApJ, 681, 73 をベースに用いた.

v²GC: an SA model

- 元々のモデル: Nagashima+05, ApJ, 634, 26 &
 Enoki+03, PASJ, 55, 133
 "Numerical Galaxy Catalogue (vGC)"
- ・アップデート: Makiya+ Submitted to PASJ

"**New** Numerical Galaxy Catalogue (v²GC)" 銀河モデルのアップデート

・SMBH・AGN モデルアップデート: HS+ in prep.

v²GC N-body

• N体シミュレーション: Ishiyama+15, PASJ, 67, 61

- ・gas reservoirスケールへのガス降着トリガーは 銀河合体のみを考える.
- Hopkins+ 2009, MNRAS, 691, 1168 をベースにして, 銀河合体でbulgeに分配される星・ガス量を計算

$$M_{0,\text{bulge}} = M_{1,\text{bulge}} + f_{\text{VR}}M_{1,\text{disk}} + M_2$$

$$M_{0,\text{disk}} = (1.0 - f_{\text{VR}})M_{1,\text{disk}}$$

$$f_{\text{VR}} = \frac{\text{MIN}(M_{1,\text{disk}}, M_2)}{M_{1,\text{disk}}}$$

$$M_2/M_1 > 0.1 \text{ 0} \oplus \mathbb{G}^{1} \oplus$$

・gas reservoir = CircumNuclear Disk (CND) モデル

銀河から降着したガスが ~ 100pc スケールに溜まる (CND形成) ↓ CND内で星形成

↓ 超新星爆発が作る 乱流でガスの 角運動量を抜く ↓ SMBHへ降着

Kawakatu & Wada (2008) Fig. 1

- 1. 銀河からCNDへのガス供給
- CNDが不安定状態ならSMBHへ ガス降着を起こす

from host galaxy

 $M_{\rm sup} = f_{\rm BH} \Delta M_{\rm *, burst}$

mode(i) CND全体が不安定 (降着率が高い) mode(ii) 一部不安定 (外側) (降着率が低め)

- · mode(i)
 - $\dot{M}_{\rm BH} = 3\pi\alpha_{\rm SN}\eta E_{\rm SN}C_*\Sigma_{\rm gas,CND}(r_{\rm CND})\frac{r_{\rm CND}^3}{GM_{\rm BH}}$
 - $C_* = \Sigma_{\rm SFR} / \Sigma_{\rm gas, CND}$

$$\log \Sigma_{\rm SFR} / [M_{\odot} {\rm yr}^{-1} {\rm kpc}^{-2}] = 1.42 \times \log \Sigma_{\rm CND,gas} / [M_{\odot} {\rm pc}^{-2}] - 3.83 + 0.9$$

(Daddi+ 10, ApJL, 714, L118)

- ULIRG等のKS relationがCNDに適用できると仮定
- mode (ii) $\dot{M}_{\rm BH} = 21 \left(\frac{r_{\rm CND}}{h(r_{\rm CND})} \right) \left(\frac{M_{\rm CND,gas}}{M_{\rm BH}} \right)$

h: scale hight

• M_{BH} - M_{bulge} relation $\mathcal{E} z \sim 0 \mathcal{O}SMBH$ mass function

• AGN luminosity functions

• M_{BH} - M_{CND,gas} relation

mode(i)は全く起こらず,全てmode (ii)で成長.

• Mcnd,gas - mass accretion rate relation

Problems & Discussion

- ・モデルの問題
 - 1. CNDで星形成が起きない
 - -> 星形成を起こす条件がCND内縁半径に依存 -> BHがactiveでない時の"内縁半径"とは何?
 - 2. AGN光度関数の観測との不一致

Problems & Discussion

- ・準解析的銀河形成モデルのために欲しい情報
 - 1. CND版 KS relation
 - 2. CND スケール
 - 3. 母銀河からCNDへの ガス供給タイムスケール

Summary

- SAモデル、
 ²GCにKawakatu & Wada 08のCND モデルを導入している
- 局所的シミュレーションや観測から示唆される物理
 メカニズムが銀河形成の枠組みの中でどう機能する
 かを調べる必要がある
- (今回の結果には多くの問題があるが) 今後シミュレー
 ション・SAモデルの連携はより重要になるだろう