Nuclear starbursts and AGN fueling - IR view -

Masa Imanishi (Subaru Telescope/NAOJ)

ALMA AGN workshop

2015 Dec 21

Outline

- 1. Our IR study
- 2. Related IR study
- 3. Implication
- 4. Unknowns and future work

Nuclear starbursts in the AGN torus

Kishimoto+11,+09; Fritz+06: Σ(dust) ∝ r ⁰ ~ r ⁻¹

Inflated dusty/molecular torus by nuclear SB

Time evolution

Schartmann+14 MN 445 3878 (see also Wada12 ApJ 758 66)

Nuclear starbursts : < several 10 pc (< 1" at z > 0.01)

Slit spectroscopy

Infrared 3-4 um (L-band)spectroscopy

1: 3.3um PAH from starburst (not AGN)

2: PAH is intrinsically strong (EW~0.1um)

Weak starburst detectable

Infrared 3-4 um (L-band) spectroscopy

3: Low dust extinction (0.03-0.04Av)

Nishiyama+08,09

L(SB) from OBSERVED PAH || L(SB) from Av-corrected UV

For 3 Sy2s (Imanishi 2002 ApJ 569 44)

Starbust luminosity is quantifiable

4: More sensitive than N-band (8-13um)

Observations

Infrared 3-4um (L-band) slit spectroscopy of

- 32 Sy2s and 23 Sy1s (moderate-luminosity AGN)
- 30 PG QSOs (high-luminosity type-1 AGN)

Origin of nuclear PAH emission

- AGN / Old bulge stars (central regions)
 no PAH
- Disk star-formation / Nuclear starbursts

Surface brightness: PAH > 20*10³⁹ [ergs s⁻¹ kpc⁻²] IR > 20*10⁴² Starbursts

PAH emission is of nuclear starbursts origin

Results

• rest EW(3.3 PAH) << 0.1 um

Observed nuclear 3-4 um fluxes are dominated by AGN (not starbursts)

• L(3.3 PAH)/L(IR) << 10⁻³

Nuclear starbursts contribute little to L(IR) of Seyferts

Nuclear starburst luminosity

Sy2 = Sy1 or Sy2 > Sy1 (?)

Starburst ➡ inflate torus ➡ Sy2 (Wada+02, Levenson+02)

IRAS 12um, 25um = AGN power

Nuclear N-band, radio core = AGN power

Main results (Moderate luminosity AGNs)

L(nuclear SB) : Sy1 ~ Sy2

Scenario of L(nuclear SB) : Sy2 > Sy1 Not supported

L(nuclear SB) and L(AGN) : correlated

Nuclear SB is energetically not dominant, but physically close to AGN

PG QSOs (high-luminosity type-1 AGN)

AGN – nuclear SB connections in a wide AGN luminosity range

MIR 8-13um (N-band) spectroscopy Esquej+14 ApJ 780 86

Nuclear SB vs extended SB

Nuclear SB : strongly correlated with L(AGN)

Nuclear SB vs extended SB

Diamond Stanic+12 ApJ 746 168

NIR H- (1.65um) and K-(2.2um) spectroscopy

Nuclear SB regulates L(AGN) ?

Q: Do we indeed understand torus?

Fit nuclear MIR emission with clumpy torus model

VLTI: MIR 10um emission is compact

Jaffe+04 Nature 429 47

Tristram+07 AA 474 837

Inflated dusty/molecular torus by nuclear SB

50-100 pc scale thick molecular gas

NIR 2um IFU (H₂ line)

High σ/v at 50-100 pc

Dust and molecular gas usually coexist

Inflated dust at 50-100 pc ?

10um emission probes hot (~300K) dust

Smaller than the actual torus outer radius?

Shorter λ

compact

Schartmann+08 AA 482 67

ALMA high-spatial-resolution 350um image

Garcia-Burillo+14 AA 567 A125 0.3-0.5"

No discrete torus emission at 350um

Even higher resolution help?

Veiled by extended cool dust emission?

Need 20-30um?

Nuclear MIR emission = torus origin ?

Jaffe+04 Nature 429 47

Tristram+07 AA 474 837

Origin of nuclear MIR emission

Schartmann+14

10um/20um flux ratio

20um obs TMT/MICHI ?

TMT 30m + MICHI 10,20um

PI:Packham

UKIRT/UIST : 3-4um (L-band) IFU

Seeing-limited 3.3um PAH map of >100 pc-scale circumnuclear SB

Vaisanen+12

MN 420 2209

High-spatial-resolution, AO-assisted, 3-4um IFU is ideal

No such instrument in the world

UKIRT/UIST decommissioned

TMT 30m has no 3-4um (L-band) instrument

ALMA spatially-resolved molecular line flux ratios in very nearby AGN

Viti+14 AA 570 A28

0.6" x 0.5"

Higher-spatial-resolution?

A reliable unique model needed

Summary

AGN fueling could be explained by AGN – nuclear starburst connection

Essential parts are still far from complete understanding

but

TMT/MICHI + ALMA may be powerful

AGN regulate nuclear SB ?

Nuclear SB regulate AGN?

End