ALMA-AGN workshop on Dec 21, 2015 at NAOJ

Sudden Death of AGN in Arp 187?

Ichikawa et al. 2015, PASJ, 281

Kohei Ichikawa (市川幸平)

NAOJ Hawaii/Mitaka Postdoctoral fellow, Japan

Collaborators J. Ueda, M. Shidatsu, T. Kawamuro, K. Matsuoka

Key question: AGN lifetime Poorly known about AGN lifetime \Box Total Accretion time scale: 10⁷⁻⁸ yr (e.g., Marconi+04) ☑ One AGN lifecycle: 10⁵ yrs? (e.g., Novak+11; Schawinski+15) How fast does AGN drop its luminosity? \square 2 order of mag in 10⁵ yr? (Hanny's voorwerps e.g., Schawinski+10; Keel+12) **□ 1** order of mag in 10 yr (changing-look AGN; LaMassa+15) It might be highly related to AGN accretion disk state? and/or AGN torus environment?

Here I report another interesting source

Arp 187 Arp187: Merger remnant LIRG

Good candidate of AGN feedback

ALMA observations

Image: Some dusty outflow occurs?

Arp 187: VLA observations VLA 5, 8.5 GHz show bimodal jet lobes

Jet properties

☑ Both lobes show spec index α=-1 => synchrotron jet
☑ jet kinetic age: 6×10⁴ yr (jet angle=90° w/ v=0.1c)
☑ jet core seems absent (f_{5GHz} < 210 µJy)

AGN diagnostic: Optical AGN signs: NLR (probably) exists

Optical properties: typical Seyfert luminosity

✓ detections of [OI]6300, Ha, [NII], [SII], [OIII], Hb?
✓ [NII]/Ha = 0.8, located at composite or AGN
✓ L_[OIII] = , => L_{2-10keV} = 1.2× 10⁴³ erg s⁻¹ (e.g., Ueda, Hashimoto, KI+15)

AGN diagnostic: Infrared Spitzer/IRS (w/4.5") shows that AGN torus (<10pc) is faint

IR properties: SB emission is dominant

AGN diagnostic: X-ray

No previous deep X-ray observations for this target

Swift/BAT all-sky survey (E=14-195 keV)

- ☑ Not listed in the catalog (Baumgartner+13)
- $=> L_{14-195keV} < 4.7 \times 10^{43} \text{ erg s}^{-1}$
- => consistent w/IR upper limit: $L_{14-195keV} < 5.9 \times 10^{42}$ erg s⁻¹

ROSAT all-sky survey (E=0.5-2 keV)

Not listed in the catalog (Voges+99)
=> L_{0.5-2keV} < 8.8×10⁴² erg s⁻¹
=> consistent w/IR upper limit: L_{0.5-2keV} < 2.0×10⁴² erg s⁻¹ (Γ=1.9; e.g., Brightman+13)
Not located in the XMM-slew survey region

Suzaku obs. (AO-10) was awarded, but not completed => Obs. w/ Nustar, ASTRO-H, and/or Chandra is crucial

BH mass of Arp 187

Using M_{BH} - M_{bulge} relation, we estimate M_{BH}.

- $\square L_{Kband} => M_{stellar} = 1.3 \times 10^{11} M_{sun} w/n_{sersic} \sim 4$
- => M_{stellar} ~ M_{bulge}
- => M_{BH} ~ 7×10⁸ M_{sun} (Kormendy & Ho 2013)

Upper limit of λ_E :

 $\square \ L_E = 8.4 \times 10^{46} \ erg \ s^{-1}, \ L_{bol} < 8.4 \times 10^{43} \ erg \ s^{-1} \\ => \lambda_E < 10^{-3} \\ \ \textbf{Disk is now ADAF state? (Ichimaru '77, Narayan & Yi '94)}$

BH fundamental plane

If you have either two values of $L_{5GHz (core)}$, $L_{2-10keV}$, M_{BH} , then you can estimate the final one.

Merloni+03 Heinz+03 Yuan+14

Upper limit of L_R, and M_{BH} are given, then ∠ L_{2-10keV} < 4 × 10³⁹ erg s⁻¹ (see Gultekin+09; Yuan & Cui '05)

What is happening in Arp 187?

 ☑ Signs of NLR, jet (> kpc)
☑ Absence of torus, radio core (<10 pc scale)

FYI; dust torus cools <1yr (Ichikawa+16, in prep.)

AGN "was" active ~10⁵ yr ago, but currently AGN "is" dead.

It is called "AGN light echo"

see Hanny's Voorwerp (10⁴⁻⁵ yr ago; Lintott+09, Schawinski+10, 15; Keel+12) or the galactic center (500 yr ago; Ponti+10; Capelli+12; Ryu+13; Nakashima+14) or Fermi bubbles study (10⁶ yr ago; Zubovas+11, 12; SU & Finkbeiner '12)

<10 pc

Nai

Lin

Re

DW

n

jet

CNASA

1-10 kpc

<10 kpc

Summary: witnessing the death of AGN Arp 187 is a LIRG w/ interesting properties

☑ NLR, jet lobe (w/ age~10⁵ yr) exist
☑ torus, jet core is absent
=> AGN "was" active but "is" dead

L_{AGN} has decreased at least 10-10³ times in ~10⁵ yr Sudden (=10⁵ yr) Death of AGN in Arp 187

CSO may be good candidates which have similar properties with Arp 187

Appendix

AGN diagnostic: Optical AGN signs: NLR probably exists

Optical properties

- ☑ detection of [OI]6300, Ha, [NII], SII
- ☑ [NII]/Ha = 0.8, located at composite or AGN
- \square L_[OIII] = , => L_{2-10keV} = 1.2× 10⁴³ erg s⁻¹ (e.g., Ueda+15)