1

CO近赤外線吸収から探る銀河中心pcスケールでのガスの物理状態:あかりと Spitzerによる低分散分光観測

馬場俊介(東大, ISAS/JAXA) 中川貴雄, 磯部直樹(ISAS/JAXA), 白旗麻衣(国立天文台)

Introduction: Active Galactic Nuclei (AGNs)

- Classification
 - Broad and Narrow lines -> type 1
 - Only Narrow lines -> type 2
- Unified Scheme
 - Central SMBH, accretion disc
 - Broad Line Regions nearby the center
 - Optically and geometrically thick dusty molecular torus
 - Narrow Line Regions above the torus
 - face-on \rightarrow type 1
 - edge-on \rightarrow type 2

Molecular torus is a key object!

Introduction: observations of molecular tori

- Face-on
- CO rotational emission (milli, sub-millimeter)
- spatial resolution ~mas
 ~pc in nearby universe
- Edge-on
- near-infrared continuum
 - heated inner edge of tori
- CO ro-vibrational absorption
- gas in the torus absorbs thermal radiation
- NIR emission from host galaxies is negligible

Introduction: CO ro-vibrational transition

- Band center 4.7 um
- vibration: $v = 1 \leftarrow 0$
- rotation: $\Delta J = \pm 1$
- 2 branches
 - R-branch: $\Delta J = +1$
 - P-branch: $\Delta J = -1$
- Absorption lines of different J come in a small wavelength range.
- Good probe for physical states

Introduction: other researches

- Spoon et al. 2004, ApJS, 154, 184
 - IRAS F00183-0711
 - LINER
 - Obscured AGN?
 - Spitzer observation
 - Strong CO absorption
- Lutz et al. 2004, A&A, 426, 5
 - Nearby 31 Seyfert galaxies
 - 19 type 1 and 12 type 2
 - ISO observations
 - No detection of CO absorption

What makes the difference between the two groups ?

Introduction: other researches

- Shirahata (2005), Shirahata et al. (2013)
 - Obscured AGNs
 - High-resolution spectroscopy with Subaru
 - Resolved rotational levels
 - Targets were limited by luminosity and redshift
 - *M*-band observation $\rightarrow z < 0.13$

6

- space telescopes enable complementary studies
 - Low-resolution
 - Large sample

In this study, we analyze CO ro-vibrational absorption systematically using AKARI and Spitzer.

Method: space observations

AKARI

- NIR grism spectroscopy
- Wavelength: 2.5–5.0 um
 - Redshift z < 0.07
- Spectral resolution: $\lambda / \Delta \lambda = 120 @3.6 \ \mu m$
- Spatial resolution: ~5"

Ground: $\lambda/\Delta\lambda \sim 10000$ Space: $\lambda/\Delta\lambda \sim 100$

Ground: z < 0.13 for *M*-band Space: Not limited by the atmosphere

Ground: > 100 mJy for one-night observations in Subaru Space: > 1 mJy for ten-minute observations with AKARI

Spitzer

- SL, HL module
- Wavelength: 5.2–40 um
 - Redshift z > 0.13
- Spectral resolution: $\lambda/\Delta\lambda = 86 @5.2 \text{ um}$

7

Spatial resolution: ~4"

Method: model fitting

- AKARI and Spitzer observations cannot resolve rotational levels
- Model fitting assuming local thermal equilibrium
 - Cami et al. (2000)

0.8

0.4

0.2

0

4.4

4.5

4.6

4.7

Rest Wavelength (µm)

Vormalized Flux 0.6

- Slab geometry and single component •
- Free parameters: column density N_{CO} , • temperature $T_{\rm CO}$, line width $v_{\rm turb}$

R = 100

 $T_{\rm CO} = 100 \, {\rm K}$

4.8

 $N_{\rm CO} = 5 \times 10^{19} \, {\rm cm}^{-2}$

v_{turb} = 100 km s⁻¹

4.9

 $N_{\rm CO} \times 5$

4.5

4.6

4.7

0.8

0.6

0.4

0.2

4.4

5

Targets: selection and optical classification

• AKARI

- Mission Program "AGNUL"
- Observations during Phase 1 and 2 (LHe + mechanical cooler)
- 3 targets that show the signature of CO absorption
- Spitzer
 - 4 targets reported by Spoon et al. (2005)

IRAS 08572+3915	z = 0.0583	LINER	
UGC 5101	0.0392	LINER	
IRAS 19254-7245	0.0617	Seyfert 2	
IRAS F00183-7111	0.3270	LINER	
IRAS 00397-1312	0.2617	H II	
IRAS 00406-3127	0.3424	Seyfert 2	
IRAS 13352+6402	0.2370	?	

cf. NGC 1068 (z=0.0038)

Results: χ^2 in the parameter space

IRAS 08572+3915

Calculated χ^2 in the 3D parameter space

searched the best fit

Results: best fit

Cf: molecular clouds in star-forming regions, T < 50 K

Results: best fit

- Origin of NIR continuum
 - NIR continuum (${\sim}5~\mu m$) $\,$ -> $\,$ Thermal radiation ($\gtrsim 10^3~K$)
 - Heated by central nuclei
 - Dust sublimation temperature is $\sim 1500~\text{K}$
 - \rightarrow inner edge of the torus is a good candidate

• Absorber

- Absorption line of each J is almost saturated
- Molecular clouds in star-forming regions distribute randomly and cannot cover the background entirely
- Molecular cloud of systematic geometry surrounding the nucleus

- Heating mechanism
 - Observed gas has high temperature (350 K) and large column density $(N_{\rm H}^{\rm obs} \sim 10^{23} \, {\rm cm}^{-2})$
 - 3 candidates are examined
- 1. Photo Dissociation Region (PDR)
 - The accretion disk emits UV light and heats surrounding gas up to 10^4 K (Tielens & Hollenbach 1985).
 - But UV flux is attenuated by neutral gas and penetrates column density of only $N_{\rm H} \sim 10^{21} \, {\rm cm}^{-2} \ll N_{\rm H}^{\rm obs}$ (Diplas & Savage 1994).
 - PDR can hardly explain the observed large column density.
- 2. Shock Heating
 - Shock layers caused by such as outflows can be heated up to ~ 1000 K.
 - But the scale of shock layers is only $N_H \sim 10^{21}\,{\rm cm}^{-2} \ll N_{\rm H}^{\rm obs}$ (McKee et al. 1984)
 - The observed large column density cannot be explained by shock heating.

- 3. X-ray Dissociation Region (XDR)
 - AGN nucleus emits hard X-ray photons (2—10 keV) and heats surrounding gas.
 - The temperature of the gas can reach $\sim 10^4$ K.
 - Hard X-ray can penetrate neutral gas of $N_{\rm H} \sim 10^{24} \, {\rm cm}^{-2} \sim N_{\rm H}^{\rm obs}$ before photoelectrically absorbed (Meijerink & Spaans 2005).
 - XDR can explain the observed large column density.
 - \rightarrow XDR is a good candidate as the heating mechanism

- When CO absorption is observed?
 - Geometrical effects?

Kawaguchi et al. 2010, 2011

Summary

- We observed CO ro-vibrational absorption (4.7 um) to study the physical state of molecular tori.
- From observations by AKARI and Spitzer, we obtained spectra of low resolution and wide wavelength range for 7 targets.
- CO absorptions were almost saturated and implied background emitters heated by the nuclei and molecular clouds of systematic geometry surrounding them.
- From the model-fitting analysis, in spite of low-resolution spectra that does not resolve rotational levels, we succeeded to obtain column densities, temperatures, and line widths with uncertainties of (several) \times 10%.
 - Medians of them were, $N_{\rm CO} = 1 \times 10^{19} \, {\rm cm}^{-2}$, $T_{\rm CO} = 350 \, {\rm K}$, $v_{\rm turb} = 70 \, {\rm km} \, {\rm s}^{-1}$
- The result indicates warm and abundant gas.
- XDR is a good candidate of the heating mechanism