ALMA Workshop 「系外銀河における微細構造線の観測とその理解」 2014年12月2-3日@東大天文センター

Nearby Galaxiesでの

[CI]の観測について

- [CI]とは?
- ▶ 分子ガス質量のトレーサー
- 輝線比を用いた種々の診断

Takuma Izumi The Univ. of Tokyo (takumaizumi@ioa.s.u-tokyo.ac.jp)

[CI]とは?

- ・ 電子基底(最安定な³P状態)はさ
 らに3準位微細構造系に分裂。
- ・ 3準位ゆえにモデル化が簡単
 → LTEと背景温度を仮定すれ
 ば、T_{ex}とて(CI)が求まる。
- ・ 周波数的に、ALMAでhigh-z天体
 を観測するのに適している。

[CI]	ν _{rest} [GHz]	n _{cr} @50K [cm-3]	Eu [K]	
³ P ₂ - ³ P ₁ (2-1)	809.34	3000	62.5	ALMA Band 10
³ P1- ³ P0 (1-0)	492.16	500	23.6	ALMA Band 8

- ただし、 $J(T) = \frac{h\nu/k_{\rm B}}{\exp(h\nu/k_{\rm B}T) 1}$: submm/FIRなのでRJ近似は不可
- また、LTE条件下では励起温度T_{ex}は1-0と2-1遷移で共通。
 互いに独立ではなく、励起温度の関数として決まる。

分子ガス質量のトレーサーとしての[CI]

• 予想に反して[CI]は分子雲のどこからでも出ている。

- その分布はoptically-thinな¹³COと(ほぼ)完璧に一致。
- しかも、X(CI)/X(CO) abundance比も一様なようだ。
- その原因は…?

分子ガス質量のトレーサー

- ・ 空間分解した測定:
 - 位置の関数として柱密度を測定し、対象領域で積分
- 一般的な水素分子柱密度のトレーサーとしては、

 - ダスト放射: ○ 化学組成、励起に依存しない。× emissivity/ opacityがwell-determinedである必要、速度場の情報が得られない、 ダスト温度の精密測定が必要。

- ¹³CO:〇 速度場の測定も可能(複数成分への分離が容易)、ダストの詳細な性質が不要。× 化学組成、励起に敏感。

• **[CI]**はどうなのか?

- 期待すること:Classical PDR(homogeneous, steady-state chemistry)の観点では、分子が解離されるlow-Av領域をトレースしているはず。。

分子ガス質量のトレーサー

- 空間分解した測定:

分子ガス質量のトレーサー

- 空間分解した測定:

系内天体観測からの示唆:空間分布(1)

Δδ (Arcminutes)

[CI]と¹³COは基本的に同じ分布 をしている 。

(e.g., Ikeda et al. 1999, ApJ, 527, L59; Plume et al. 2000, ApJ, 539, L133; Ojha et al. 2001, ApJ, 548, 253)

しかも<mark>分子雲にubiquitous</mark>。

(e.g., Schilke et al. 1995; Kramer et al. 2008, A&A, 547, 555; Tatematsu et al. 1999, ApJ, 526, 295)

Plume et al. 2000, ApJ, 539, L133

系内天体観測からの示唆:空間分布(2)

5 10 15

5 10 15 20

Beuther et al. 20145A&A, 571, 53

- IRDCからも、[CI]放射は強くでている。
 → Classical-PDRの適用は難しそう。
- またしても¹³CO(やC¹⁸O)とほぼ同様の
 空間分布。

系内天体観測からの示唆:空間分布(3)

[Cl](1-0)/¹²CO(3-2)比は場 所ごとに違う (Ori-Aの場合 は南北のgradient) \rightarrow Ori-Aに付随するT_{kin}の南 北gradientを反映して、 τ (Cl) が変化していることを反映?

- Ikeua et al. 1999, ApJ, 527, L39
- [CI](1-0)/¹³CO(1-0)比はほぼ一様!
 → [CI]と¹³COは同程度のopacity、かつabundance比がほぼ一様であることを示唆。
- C+/C/COとlayerに分かれるclassical-PDRの描像とは矛盾?

High-z天体の観測例:[CI]のabundance

- 2.2 < z < 6.4の17個のQSO/SMG(観測+文献)
- 励起温度は、 $T_{\text{ex}} = 38.8 \times \left(\ln(\frac{2.11}{L'_{\text{CI}(2-1)/\text{CI}(1-0)}}) \right)^{-1}$
- Optically-thinを仮定して、[CI]の質量は、
 - $M_{\rm [CI]} = 1.9 \times 10^{-4} Q(T_{\rm ex}) e^{23.6/T_{\rm ex}} L'_{\rm [CI](1-0)} [M_{\odot}]$

High-z天体の観測例:[CI]のabundance

- 励起温度は T_{ex} ~ 30K:近傍銀河と同程度
- Fractional abundanceは X(CI)/X(H₂) ~ 8×10⁻⁵ 程度でほぼ一定
- See also, Weis et al. 2005, A&A, 429, L25; Alaghband-Zadeh et al. 2013, MNRAS, 435, 1493

Walter et al. 2011, ApJ, 730, 18

Source	$T_{\rm ex}{}^{\rm a}$	$M_{\rm CI}$	M _{H2}	X[C I]/X[H ₂]	$L_{\rm CI(1-0)}/L_{\rm FIR}$	$L'_{\rm CI(1-0)}/L'_{\rm CO(3-2)}$	$L'_{\rm CI(2-1)}/L'_{\rm CI(1-0)}$
	(K)	$(10^{7} M_{\odot})$	$(10^{10} M_{\odot})$	10-5	10-6		
SMMJ02399-0136	21.6 ± 6.3	2.0 ± 0.2	4.0 ± 0.5	8.1 ± 1.4	10 ± 4	0.30 ± 0.05	0.35 ± 0.18
APM08279+5255	30.00	0.050 ± 0.007	0.154 ± 0.014	5.4 ± 0.9	1.3 ± 0.6	0.21 ± 0.03	< 0.44
RXJ0911+0551	23.5 ± 3.0	$0.26~\pm~0.04$	0.32 ± 0.04	14 ± 3	4.2 ± 1.8	0.52 ± 0.10	$0.41~\pm~0.08$
F10214	42.0 ± 10.9	0.36 ± 0.06	$0.95~\pm~0.18$	6.4 ± 1.7	1.4 ± 0.6	$0.24~\pm~0.06$	0.8 ± 0.2
SDSSJ1148+5251	30.00		2.2 ± 0.5				
SMMJ123549+6215	30.00	1.8 ± 0.3	3.4 ± 0.4	9 ± 2	12 ± 5	$0.34~\pm~0.08$	< 0.34
GN20.2	30.00		3.0 ± 1.2				• • •
GN20	30.00		$4.7~\pm~0.6$				
BRI1335-0417	30.00	<11	6.8 ± 1.4	<28	<13	<1.1	< 0.13
SMMJ14011+0252	$32.4~\pm~5.2$	0.15 ± 0.03	0.31 ± 0.03	8.2 ± 1.6	14 ± 6	0.32 ± 0.06	0.64 ± 0.12
Cloverleaf	$26.7~\pm~3.0$	0.76 ± 0.12	3.32 ± 0.05	3.8 ± 0.6	2.9 ± 1.3	0.15 ± 0.02	0.49 ± 0.08
SMMJ16359+6612	26.2 ± 4.0	0.16 ± 0.03	0.34 ± 0.02	7.8 ± 1.5	12 ± 5	0.30 ± 0.06	0.48 ± 0.11
SMMJ163650+4057	30.00	<1.4	3.9 ± 0.5	<5.8	<9	< 0.22	<1.0
SMMJ163658+4105	30.00	1.8 ± 0.4	4.6 ± 0.5	6.4 ± 1.5	9 ± 4	0.25 ± 0.06	< 0.82
MM18423+5938	34.1 ± 8.8	0.5 ± 0.1	0.79 ± 0.08	11 ± 3	8 ± 4	0.41 ± 0.10	$0.7~\pm~0.2$
SMMJ213511-0102	$22.4~\pm~0.6$	0.91 ± 0.03	0.95 ± 0.01	15.9 ± 0.5	14 ± 6	0.60 ± 0.02	$0.37~\pm~0.02$
PSSJ2322+1944	32.8 ± 7.4	0.71 ± 0.11	2.4 ± 0.3	4.9 ± 1.0	4.1 ± 1.8	0.19 ± 0.04	0.65 ± 0.17

[CI]に関する問題

- ・ ¹³COと一致する、ほぼ分子雲の"どこにでもある"ことの原因は?
- ほぼ一定のfractional abundanceの原因は?
- これらが解明されると、気持ちに余裕をもってmassの推定に使える。。

CircinusではCOのLVG解析からもとめたガス質量と、[CI]の LTE解析から求めたガス質量はほぼ一致。

Possible interpretations (1): Clumpy-PDR

- ×1018 [cm-2 **C**⁰ ×1018 [cm-2] CO 0.0 -0.5 -1.0X [pc]
 - Classicalに想定されていた、
 "homogeneous medium"を変える (e.g., Oka et al. 2004, ApJ, 602, 803)。
 - Turbulence etc.で密度構造にム
 ラを作れば、想像以上に分子雲
 内部にUV光が浸透し、[CI]が増
 えるだろう。

Possible interpretations (2): Non-equillibrium + Turbulence + CR

- ・ 星間化学は<mark>非平衡</mark>。
- 化学反応の(平衡状態までの)タイ ムスケール: O(1e7 yr) >
 Dynamical time: O(1e6-7 yr)
- 従って、steady state abundance ratioは実現できない。
- ・ Turbulenceは領域ごとのabundanceの違いを均質化してしまう。 (e.g., Papadopoulos et al. 2004, MNRAS, 351, 147; Glover et al. 2014 in press.)
- ・ Cosmic-Rayは、分子雲深部に浸透し、COを解離。[CI]をenhance (c.f., M82中心部 Schilke et al. 1993, ApJ, 417, L67)。

Numerical Simulation (1)

Glover et al. in press.

Numerical Simulation (2)

Glover et al. in press.

¹³CO並み、low-Avに限ればそれ以上に高いlinearityを[CI]は示す。
 → 1.5 < Av < 7で[CI]が有用である。
 → N_{H2}では、5e20-1e22 cm⁻²程度の範囲。

[CI]に関する問題 まとめ

- ・ これまでの研究をまとめると、おおむね[Cl]を分子ガス質量のトレー サーとすること自体は大丈夫そうだ。
- ただし、なぜ分子ガスをトレースできるのか、観測的にはよく分かっていない。
 - \rightarrow Clumpy PDR, Turbulence, Non-equillibrium chemistry, Cosmic-Ray
- 空間分解できる近傍銀河(Milky Wayにはないvigorousな星形成環 境がある; NGC 253, M82, etc)で、[CI](1-0), (2-1)や、CO系を定 量評価することが重要だろう。
 - → 最終的にはHigh-z天体のガス質量、fractionの評価へ。

おまけ:輝線比を用いた診断: (1) 星形成モード

[CI]がtotal gasを、HCNやhigh-J CO がdense gasを見ているとする。

(dense gas)/(total gas)の比を、それらの輝線で代替するとして調べると、バーストモードの星形成と
 quiescentな星形成で輝線比に差が出る。

[CI]で分子ガス質量を測りつつ、隣接 するCO(4-3)との輝線比をとって星 形成モードを調べる@宇宙の古今

- Cosmic-RayにCOが解離されたように、X線でも同様にCOは解離、[CI]
 を著しくenhanceするという予測もある。
- ただし、これはhomogeneous, steady stateなgas-phase modelで ある点に注意。

