[N II] 205 µm Science Cases for the Greenland Telescope

Hiroyuki Hirashita

Satoki Matsushita, Patrick M. Koch ASIAA GLT <u>Single Dish</u> Science Discussion Group (ASIAA, Taiwan)

Topics

- 1. GLT Project
- 2. THz Science
- 3. [N II] 205 µm Surveys
- 4. Conclusion

1. Greenland Telescope (GLT) Project

- ALMA-NA Prototype 12 m Antenna
- To be placed in Greenland Summit Station @ 3,200 m
- Main purpose: submm VLBI (imaging of the M87 black hole) starting around 2016.
- ASIAA, SAO, Haystack Observatory, and NRAO

Site Testing at Summit Station in Greenland

Day from 1 January 2011

Single Dish Use of GLT

Time suitable for VLBI is limited.

 \Rightarrow Available for a large part of a year as a single dish!

Taking advantage of good atmosphere and flexible time allocation \Rightarrow

- (2) Time-consuming surveys.
- (3) Monitoring.

Beam ~ 4 arcsec @ 1.5 THz Similar resolution to SMA

(1) Vicinity of newly formed stars by highly excited CO (S. Takakuwa).

- (2) Simple molecules: starting point of the chemical reactions (O. Morata).
 (3) [N II] 205 µm as a SF indicator (H. Hirashita).
- <u>Continuum (including polarization)</u>: The highest frequency (1.5 THz) gives the most independent information from the existing submm surveys (H. B. Liu, P. Koch, S. Matsushita, H. Hirashita).

3. [N II] 205 µm Surveys

(1) $E_{ion}(N) > 13.6 \text{ eV} \Rightarrow \text{Exists only in H II regions.} \Rightarrow$ Good indicator of SFR (Inoue et al. 2014)? (2) Metallicity dependence is also important to derive metallicities in high-z galaxies by ALMA (Nagao et al. 2012).

[N II] 205 µm as a SF Indicator

<u>Galactic H II regions:</u> $L(N II) = C L(H\alpha)$ [or *C' L*(radio)] Starting point for the local calibration of FIR finestructure line SF tracers.

Name	$(l, b)^{a}$	α	δ	Size ^b	$S_{\nu}(6\mathrm{cm})$	$f_{\rm NII}^{\rm c}$	$f_{\rm NII,beam}{}^{\rm d}$
		(J2000)	(J2000)	(arcmin)	(Jy)	(MJy)	(Jy/beam)
W 3	133.7 + 1.2	02h25m30s	+62d05m19s	1.7×1.5	80	0.379	421
W 51	49.5 - 0.4	19h23m48s	+14d30m46s	complex	400	_	—
DR 21	81.7 ± 0.5	20h39m15s	+42d19m11s	0.3×0.4	19	0.0900	2410
$\operatorname{NGC}7538$	111.5 + 0.8	23h13m21s	+61d28m32s	2.3×1.9	26	0.123	90.4

GALACTIC H II REGIONS TO BE OBSERVED BY THE GLT (MATHIS 2000)

Sensitivity: 190 Jy/beam $(t/s)^{-1/2}$ with $\Delta v = 10^7$ Hz $(\Delta v = 2 \text{ km s}^{-1})$

Carina I, II

[N II]/Radio ratio provides a test for [N II] as a star formation indicator.

 \Rightarrow This ratio derived for Carina I, II is ten times smaller than that expected from Inoue et al. (2014), probably reflecting the peculiarity. \Rightarrow more samples by GLT

Nearby Galaxies

H. B. Liu, S. Matsushita, H. Hirashita

High-resolution (~ 4 arcsec) $\begin{bmatrix} III Zw 102 \\ \hline \\ III Zw 40 \\$

Nearby blue compact dwarfs variety of metallicities high-surface brightness (1) more precise dust mass (+SMA) (2) metallicity dependence of [N II] 205 μm

Resolving interesting regions in nearby galaxies Interaction interface of X-ray outflow and molecular outflow

Detectability of Low-Metallicity BCDs

<u>II Zw 40</u>:

Expected flux from SFR + scaling with metallicity (Inoue 2014)

 \Rightarrow f([N II]) = 6.5 Jy/beam for II Zw 40 with $\Delta v = 10^8$ Hz (20 km/s)

GLT: 1 σ 84 Jy/beam with $\Delta v = 5 \times 10^7$ Hz (1 sec) \Rightarrow 1.1 h integration can detect [N II] in II Zw 40

4. Conclusion

(1) GLT is targeting the 1.5 THz window, which has a rich science cases.

(2) [N II] 205 µm line is just in this window, and is potentially important as a metallicity/SFR indicator.
(3) GLT can test the dependence on the SFR (Hα or radio) in Galactic H II regions.

(4) The metallicity dependence is also addressed by observing nearby low metallicity BCDs.

Thank you!

GLT History and Status

- 2009: submm VLBI activity started at ASIAA
- 2011: acquired NA ALMA prototype in collaboration with CfA, MIT and NRAO
- 2011, August: site testing in Greenland started
- 2011: investigations for retrofitting and relocation to Greenland initiated
- 2011-now: Vertex (Germany) main contractor for antenna retrofit

ongoing efforts: - de-ice system

- space frame
- hexapod / nutator design
- site infrastructure development

upcoming major milestones:

- shipping from US to Thule military base
- possible observations from Thule Base
- traverse from Thule to Summit station

by boat to Thule

THz Lines

S. Takakuwa

Representative THz Lines

Species	Frequency (THz)	Transition	E_u (K)
CO	$1.03691239 \sim 1.95601814$	$9-8 \sim 17-16$	$248.87486 \sim 845.59418$
HCO^+	$1.06969429 \sim 1.33671568$	$12-11 \sim 15-14$	$333.77154 \sim 513.41458$
H_2D^+	1.37014600	$1_{0,1} - 0_{0,0}$	65.75626
NII	1.46113141	${}^{3}\mathrm{P}_{1} - {}^{3}\mathrm{P}_{0}$	70 K-
CH	1.47073960	N=2, J=3/2-3/2, F=2 ⁺ -2 ⁻	96.31131
HD_2^+	1.47660550	$1_{1,1} - 0_{0,0}$	70.86548
CII	1.90053690	$^{2}P_{3/2}-^{2}P_{1/2}$	91.21086
OI	2.06006886	${}^{3}P_{0}-{}^{3}P_{1}$	-

Very High-J Molecular Lines \rightarrow Very inner part of Star-Forming Cores

Pure Rotational Lines of Light Molecules → Chemically ``Basic'' Species (There are lower-frequency, fine-scale lines)

Atomic Fine-Scale Lines → PDR, HII Regions

(2-d) High-z Spectral Lines Y.-T. Lin, W.-H. Wang [C II] at 1.9/(1 + z) THz: main coolant [N II] 2.5/(1+z), 1.5/(1+z) THz: tracer of ionized regions Wide-wavelength spectrometer in submm: *z* ~ 2: [C II] 633 GHz, [wly] [mK] [N II] 829 GHz, 487 GHz *z* ~ 3: [C II] 475 GHz, -100 [N II] 614 GHz, 365 GHz Dec 17th 200 Area $> 500 \text{ deg}^2$ for baryonic acoustic oscillation to determine the [mJy] mK cosmological parameters (nature of dark energy, initial non-gaussianity, 100 200 neutrino mass). Velocity [km/s] Maiolino et al