High-z Galaxy Formation and Submm-to-IR emission

Ken NAGAMINE (Osaka Univ.)

2014. 12. 3

Outline

- What can we study with FIR lines? —> warm & cold neutral gas (WNM & CNM)
- 2. How is cold ISM distributed in high-z gal?
- Bamped Lya Systems (DLAs)
 ★ DLA-LBG connection, feedback effects
- 4. Can we detect high-z DLA gas directly?
 - ★ [C_{II}] 158 µm emission
 - ★ predictions for ALMA & Reaching z≥6

Local Galaxies in [CII]

Contursi+ '02

- Dominant coolant of late-type gals.
- Neutral ISM in PDRs
- [Cii]: 1% of total FIR emission
- [Cii]: 40% in diffuse galactic disk

e.g., also Madden+ '93 Malhotra+ '97, '01 Leech+ '99

Contour: [C_{II}] 158 µm line emission Image: 5-8 micron ISOCAM

PDRs (photo-dissociation regions)

- Regions in which the chemical and heating processes are dominated or induced by interaction with FUV photons
- [O i] 63µm and [C ii] 158µm emission from the neutral ISM arises in PDRs

Why $[C_{II}]$?

- Dominant coolant of MW-like late-type gals.
- Complementary to opt-IR (cf. LBG@z~3)
- A new window for high-z SF using DLAs —> use [Cii] to infer SFR
- Cosmological galaxy formation study with ALMA

$$n\Lambda_{[CII]} \sim \frac{N(\text{CII}^*)}{N(\text{HI})} hv_{21}A_{21}$$

(Pottasch+'79; Wolfe+ '03)

DLA Statistics

Prochaska+'14

Strong constraint for structure formation sims

Prochaska+ '05 SDSS DR3 >500 DLAs Wolfe+ '05 ARA&A

DLAs in Cosmological Simulations

Rubin+ '14

(Hennawi+)

- Probing CGM (circum-galactic medium) around DLAs using QSO pair sight-lines
- 40 DLAs at 1.6<z<3.6
- the second quasar sightline probes Lyα, Cii, Si II, and Civabsorption in the CGM transverse to the DLA to projected distances R_⊥ < 300 kpc.
- Covering fraction of optically thick Hi (N_{HI} > $10^{17.2}$ cm⁻²) \approx 30% within R \perp < 200 kpc of DLAs.
- DLAs arise close to the centers of their host halos rather than on their outskirts.
- So maybe our clumpy CNM picture for DLA is not so bad after all...

CGM

- duasar

🔆 quasar

@ high-z

How can we compute [Cii] emission in cosmological hydrodynamic simulations?

Multi-phase ISM model

CNM mass fraction

$$\label{eq:relation} \begin{split} \rho_C V_C + \rho_W V_W &= \rho_0 V_0 \quad \text{(mass conservation)} \\ \text{(CNM)} \quad \text{(WNM)} \end{split}$$

 $V_C + V_W = V_0$ (volume conservation)

$$f_M \equiv \frac{\rho_C V_C}{\rho_0 V_0} \quad \text{(CNM mass fraction)}$$
$$= \frac{1 - (\rho_W / \rho_0)}{1 - (\rho_W / \rho_C)}$$
Given $\rho_0, \ \rho_C, \ \rho_W, \longrightarrow f_M$

KN+ '06

Phase Diagram

Equilibrium:

 $\Gamma = n\Lambda$

[C_{II}] cooling rate per H atom (dotted line)

 $\ell_{C_{II}}$: spontaneous [Cii] energy emission rate

[C_{II}] Flux Density vs. Halo mass

Cumulative [Cii] Flux Density PDF

(Gadget-3 cosmological SPH simulations)

Estimates for Actual DLA galaxies

Vallini+ '13

- Cosmo sim (Gadget-2) + postprocess RT (LICORICE) + subgrid multi-phase ISM model
- But no metal-cooling, SF & feedback in the original sim —> gas dist unreliable.
- z=6 gal (≈Himiko-like LAE)
- [Cii] peak offset from galaxy by ~100 km/s; f~185 mJy km/s (for Z=Z₀); ^{3.0}
 95% from CNM, 5% from WNM ^{2.5}
- [Oi] 63µm, [Nii] 122µm much weaker than [Cii]

Yajima	1+	' 1	4			(Ror	mano-dia	ız+'13 sim.)
- · j		$N_{ m SPH}$	$R_{ m box} \ (h^{-1}{ m Mpc})$	$R_{ m box}^{ m zoom}$ $(h^{-1}{ m Mpc})$	$m_{ m DM} \ (h^{-1}{ m M}_{\odot})$	$m_{ m SPH}\ (h^{-1}{ m M}_{\odot})$	$m_{ m star} \ (h^{-1}{ m M}_{\odot})$	ϵ (pc, comoving)
	CR UCR	1024^{3} 512^{3}	20 20	3.5 7.0	$\begin{array}{c} 4.66\times10^5\\ 3.73\times10^6\end{array}$	$\begin{array}{c} 1.11\times10^5\\ 8.90\times10^5\end{array}$	$\begin{array}{c} 5.55\times10^4\\ 4.40\times10^5\end{array}$	300 300
 Gadget-3 cosmo sim w/ full physics + dust model + postprocess RT Constrained realization of 5-σ density peak ≈ quasar environment at z>6 								
• 30 pc (p	nys)	reso	. @ z=9)			6.185	2-0.0
			z=6.3 gas	CF	dust	x10	0 star	

Yajima+ '14

Yajima+ '14

Conclusions

- [Cii] emission & DLAs give us useful insights on ISM in high-z gals.
- DLAs could be clumpy CNM gas.
- Dominance of faint galaxies for DLAs: a generic prediction of a CDM model
- Most massive gals at z≥6 can be observed with ALMA if we know where to look.