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Abustruct: This paper presents identification of a 10-m antenna dynamics using accelerometers and angle encoders data.
Artificial Neural Networks is capable of identifying underlying relations between input and output data. Some identification
results are shown and compared with the results of conventional prediction error method. The results show the validation of
the ANN approach for identification of the 10-m antenna dynamics.
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Abstract: This paper presents identification and control of a 10-m antenna via accelerometers and angle encoder data. Artificial
Neural Networks can be used effectively for the identification and control of nonlinear dynamical system such as a large flexible
antenna. Some identification results are shown and compared with the results of conventional prediction error method. And we use
a neural network inverse model for control the large flexible antenna. In the neural network inverse model, a neural network is
trained, using supervised learning, to develop an inverse model of the antenna. The network input is the process output, and the
network output is the corresponding process input. The control results show the validation of the ANN approach for identification

and control of the 10-m flexible antenna.
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1. INTRODUCTION

This paper presents identification and control of a 10-m
antenna dynamics using accelerometers and angle encoders
data.

ALMA - the Atacama Large Millimeter Array - will be a
single instrument composed of 64 high-precision antennas
located on the Chajnantor plain of the Chilean Andes in the
District of San Pedro de Atacama, 16,500 feet (5,000 meters)
above sea level(shown in Fig. 1). ALMA's primary function
will be to observe and image with unprecedented clarity the
enigmatic cold regions of the Universe, which are optically
dark, yet shine brightly in the millimeter portion of the
electromagnetic spectrum.

Fig. 1 Rending of ALMA.

The ALMA is an international collaboration between
Europe and the North America to build a synthesis radio
telescope that will operate at millimeter and sub-millimeter
wavelengths. Japan also becomes a partner, making this a truly
global collaboration.

Its main targets include planetary system formation and
galaxy formation/evolution. The Technical challenges to key
instruments for such arrays are now performed; i.e.,
developments of high precision antenna, low-noise
sub-millimeter mixers, high-power sub-millimeter LO sources,
and very high-speed samplers and wideband spectro-
correlators. The  specifications imposed for recent
sub-millimeter antennas of a 10/12-m size in the open air are
demanding and challenging. For example, 12-m antennas for
Atacama Large Millimeter/sub-millimeter Array (ALMA)

have a surface accuracy of better than 25 pm and pointing/
tracking accuracy of better than 0.6" under a wind velocity of
9 m s-1. They must also be able to slew to new position 1.5
degrees away and settle to within 3 arcsec in less than 1.5 sec
to cope with phase errors caused by fluctuations in the
atmosphere.

Loads on antenna structure due to wind cause elastic
deformations, which deteriorate antenna's pointing and
surfaces accuracies. The structural behavior of the telescope is
typically measured at the encoders of azimuth and elevation
axes, while the critical performance is the actual pointing on
the sky. We need to make direct measurements of vibration
motion of the main-dish and sub-reflector with a resolution of
typically 3 - 5 um. Seismic accelerometers serve this purpose
for a frequency range from 0.1 to 100 Hz. A laser metrology
system can also serve for a frequency range < 1 Hz. The low
frequency component (< 1 Hz) is presumably due to wind load,
and the high frequency (> 1 Hz) due to modal oscillation
induced by a servo controller. It is very hard to identify and
control of the antenna system [1-9].

With all advanced control schemes, mathematical
knowledge of the dynamics of the process of interest is
necessary. System identification refers to the process of
developing a mathematical process model from experimental
data. System identification in control engineering is a key
element for wunderstanding and controlling unknown
dynamical systems. Traditional System identification
techniques such as least square estimation, quasi-linearization
and stochastic modeling have been successfully used in
nonlinear dynamical systems. In traditional system, model
structure must be defined a priori to estimate all required
system parameters. In case of antenna dynamics, defining a
priori model is difficult to get. Given input and output data,
Artificial Neural Networks (ANN) is capable of identifying
underlying relationship between the input and output data.
Some identification results are shown and compared with the
results of conventional prediction error method. The results
show the validation of the ANN approach for identification of
the 10-m antenna dynamics.

We use a neural network inverse model for control the large
flexible antenna. In the neural network inverse model, a neural
network is trained, using supervised learning, to develop an
inverse model of the antenna. The network input is the process
output, and the network output is the corresponding process
input. The control results show the validation of the ANN
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approach for identification and control of the 10-m flexible
antenna.

2. ANTENNA STRUCTURE AND
MEASUREMENT SYSTEM

10-m antenna structure is shown in Fig. 2. Ukita and Ikeda
made experiments on a 10-m antenna of Nobeyama Radio
Observatory with accelerometers and angle encoders. The
angle encoders have a 25-bit resolution (LSB = 0.039") and
were measured to have an accuracy of 0.03" rms. The drive
system of the antenna under no wind disturbance has been
measured to have servo errors of typically 0.04" and 0.10" rms
for rotational velocities < 0.001 deg s-1 and 0.1 — 0.001 deg
s-1, respectively. The telescope was located at a highland of
1350 m elevation. There are three piezoelectric seismic
sensors (PCB Model 393B12) at a sub-reflector mount chassis,
four beneath a panel support board of the backup structure
(BUS), normal to the surface, one at a reference point near the
center of the BUS, and four capacitive accelerometers (PCB
Model 3701G3) at yoke arm ends (horizontal directions,
perpendicular and parallel to the elevation axis). These data
sampled simultaneously are combined to figure out the
oscillations of antenna global structure. For example,
differences between pairs of sensors in the BUS tell us a tilt
motion of the dish in the reflector axis. The system had a noise
floor of 3 - 8 x 10-4 [m s-2 /root Hz] in the 0.1 to 1 Hz band
and 2 x 10-4 [m s-2 /root Hz] in the frequency range from 1 to
20 Hz under a condition of no wind. Our 16-bit ADC has 16
single-ended input channels with a bipolar input range of £5
Volt, and makes negligible contribution to the noise floor.
Comparisons between Fourier spectra of the sensor outputs
under windy and no-wind conditions suggest that the
components below 0.7 Hz seem to be due to noise (poor
stability) of the sensors and/or measurement system. Sensor
outputs and angle encoder readouts were simultaneously
recorded at a rate of 100 Hz, while the antenna was driven at a
rotational speed of 10-5 deg s-1 and was pointed at various
wind attack angles under a windy condition of typically 10 m
s-2.

Fig. 2 Antenna structure.
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Fig. 3 Sensors and encoders position.

3. IDENTIFICATION USING PREDICTION
ERROR METHOD

Control requirements can narrow the regions of time
frequency over which an adequate model fit is necessary.

Therefore, if the control requirements are incorporated in
the parameter estimation problem, it becomes possible to
obtain improved models over the frequency band which is of
importance to the control problem.

This is the objective of the control-relevant parameter
estimation problem.

In a more generalized mathematical sense, the control-
relevant parameter estimation problem is interpreted an
optimization problem which requires minimizing a functional
of the weighted error between the true and estimated plant
models.

Parametric identification methods are techniques used to
estimate parameters in given model structures.

It is basically a matter of finding those numerical values of
parameters that give the best fit between the model output
and the measured one.

System identification is concerned with the building of
dynamic models which describe the relationships between
measured signals. The system identification problem is to
estimate the model of a system based on observed input-output
data. Here, the parametric identification methods are used.
Parametric identification methods are techniques used to
estimate parameters in given model structures. It is basically a
matter of finding those numerical values of parameters that
give the best fit between the model output and measured one.
The applied parametric model is the ARMAX (Auto -
Regressive Moving Average eXogeneous) model which
corresponds to the description

A(@)y(t) = B(a)u(t - nk) + C(g)e(t) (D

where g is the delay operator, ny is the time delay, and A(q),
B(Q) is

A@=1+aq”’ +L +a,q™
B@=bq"' +L +b,q™ 2)
C(@=1+cq’ +L +c, g™

A time domain description of the system is given:

y(©) = G(u®) + H(qe(t) ©)

Given a description Eq. (1) and having observed the input-
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output data U, Y, the prediction errors €(t) in Eq. (1) can be
computed as:

&t)=H ™ (@y(t) - H (@G(qu(t) 4)

These errors are, for given data y and u, functions of G and H.
The prediction error method is used in order to determine
estimates of G and H by minimizing

V(G,H) = zN:e(t)z (5)

4. NN IDENTIFICATION

The most popular control system application of neural
networks is also the most straightforward conceptually. The
supervised learning capabilities of neural networks can be
used for identifying process models from input/output data.
The process data are the training set for the network, the
weights of which are adjusted until the network model output
accurately predicts the actual process output. Once the training
process is successfully concluded, the neural network
constitutes a black-box, nonparametric process model [10].

Fig. 4 is an identification system used in this paper. This
system produces output yd(k) which approximates y(k) when
subjected to the same input u(k) as the plant. u(k) are AZ axis
and EL axis angle data. yd (K) are accelerometer’s output data
on the sub mirror and the major mirror of the antenna. y(K) is
the prediction value of the output in the identification model.
ek) is an error which yd(k) is compared with y(K).
Identification model structure is multiple layers artificial
neural networks (ANNs). The ANNs have an input layers, an
output layer, and two hidden layers as shown in Fig. 5. This
ANNSs have two inputs and seven outputs. The ANNSs is a feed
forward type including no combination inside the layers. Each
hidden layers have thirty units. Each neuron activation
function f(net;) is the sigmoid function given as

out, = f(net )= — (©)
1+ exp(—net;)

The neuron activation function of output layer is assumed to
be the linear function.

fo(neti )= net, (7N

To minimize the cost function

E(k) = %(yd(k) ~y(k))® ®)

the updating equation of the weights is defined

PE(K)
ow; (k)

w; (K+1) = w; (k) =7 ©)

where Wj; is the weight value located between nodes i and j, t
is the present iteration and 7 is the learning rate parameter.
The learning rate parameter is 0.08. The thresholds is 0.01.

utk) Plant vkl
P
, [dentification
model

N\

Fig. 4 Identification system.
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Imput layer ™ “ ~ ol

ufk) ]

Fig. 5 Multiple layers neural networks.

5. IDENTIFICATION RESULTS

Identification results are shown in Fig. 6 and Fig. 7. Sensor
outputs and angle encoder readouts is simultaneously recorded
at a rate of 100 Hz, while the antenna is driven that the EL
axis is fixed at 10 deg and the AZ axis is turned around from 0
deg to 0.3 deg,. 2 angle encoders data and 7 accelerometers
data are used for the input data. NN identification results are
shown in Fig. 6 (a) and (b). Identification results of the
prediction error method are shown in Fig. 7 (a) and (b). The
blue line shows the actual experimental result and the green
line shows the identification result. Lower frequency vibration
modes have good accuracy but Higher frequency vibration
modes have not good accuracy. We carried out a computation
by using MATLAB system identification toolbox.
Identification in prediction error method is two inputs and 1
output. Identification model is determined in encoder input
and each accelerometer sensor output. Compared with
prediction error method and NN identification method, one
cycle squared estimation error of the NN method is smaller
than that of the prediction error method. One cycle squared
estimation error of the prediction error method of the sensor
No.l is 7.666x10, that of NN identification method of the
senor No.l is 1.9x10, that of the prediction error method of
the sensor No.3 is 4.8794x10 and that of the NN identification
of the sensor No.3 is 3.898x10, respectively. The total squared
error of the seven sensors of NN identification method is
21.1732x10.
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6. NN CONTROLLER
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The inverse model of a dynamical system yields input for
given out put. The model is a crucial role in a range of control
structures. Conceptually the simplest approach is direct
inverse modeling. A synthetic training signal is introduced to
the system. The system output is then used as input to the
network. The network output is compared with the system
input and this error is used to train the network. This structure
will clearly tend to force the network to represent the inverse
of the plant [11]. Fig. 8 shows the control system using NN.
For precise tracking the desired trajectory, a new cost function
for the learning the networks is presented as follows:

B = {% a(ya (k) - y, (k)Y +§ p(uo(k) —uky)’} (10)

where q is a weight of acceleration output, p is a weight of
desired trajectory input. We can rewrite the updating equation
as

OE(k) _ OE(K) ou(k)

- (11
ow, (k) au(k) ow; (k)
Bk _ _ BN (O
2o = ~Ava 0=y kN S pudo (12

where ay(k) is the system Jacobian.
ou(k)

Figs. 9 and 10 show the controlled and non controlled
results of the accelerometers output of the sensor No. 1 and
No. 5. Fig. 9 shows the results of the conventional error
learning. Fig.10 shows the results of the Jacobian learning. Fig.
(a) shows the desired acceleration of the sensor No.1 and No.5.
Fig. (b) shows the desired trajectory of the Azimuth axis and
the Elevation axis. The residual vibration with the NN
feed-forward controller is suppressing more quickly than that
without the controller. Compared with the results of he
conventional cost function Eq. (8) and those of the new cost
function Eq. (10), the new cost function is more effective for
suppressing the residual vibration and tracking the desired
trajectory.
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neural network was trained, using supervised learning, to
015 develop an inverse model of the antenna. The network input
- was the process output, and the network output was the
- Illr" | corresponding process input. The control results showed the
025 I AT | validation of the ANN approach for identification and control
. [ TR A 01 of the 10-m flexible antenna, especially the system Jacobian
ig 02 f EL 1 learning.
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7. CONCLUSION

Identification and control of a 10-m antenna dynamics for
the Atacama Large Millimeter Array project using
accelerometers and angle encoders data were presented.
Compared with prediction error method and NN identification
method, one cycle squared estimation error of the NN method
was smaller than that of the prediction error method.

A neural network inverse model was used for control of the
large flexible antenna. In the neural network inverse model, a



